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Abstract—A number of problems in computer vision and related fields would be mitigated if camera spectral sensitivities were
known. As consumer cameras are not designed for high-precision visual tasks, manufacturers do not disclose spectral sensitivities.
Their estimation requires a costly optical setup, which triggered researchers to come up with numerous indirect methods that aim to
lower cost and complexity by using color targets. However, the use of color targets gives rise to new complications that make the
estimation more difficult, and consequently, there currently exists no simple, low-cost, robust go-to method for spectral sensitivity
estimation that non-specialized research labs can adopt. Furthermore, even if not limited by hardware or cost, researchers frequently
work with imagery from multiple cameras that they do not have in their possession. To provide a practical solution to this problem,
we propose a framework for spectral sensitivity estimation that not only does not require any hardware (including a color target), but
also does not require physical access to the camera itself. Similar to other work, we formulate an optimization problem that
minimizes a two-term objective function: a camera-specific term from a system of equations, and a universal term that bounds the
solution space. Different than other work, we utilize publicly available high-quality calibration data to construct both terms. We use
the colorimetric mapping matrices provided by the Adobe DNG Converter to formulate the camera-specific system of equations, and
constrain the solutions using an autoencoder trained on a database of ground-truth curves. On average, we achieve reconstruction
errors as low as those that can arise due to manufacturing imperfections between two copies of the same camera. We provide our
code and predicted sensitivities for 1, 000+ cameras at https://github.com/COLOR-Lab-Eilat/Spectral-sensitivity-estimation, and
discuss which tasks can become trivial when camera responses are available.

Index Terms—Adobe DNG SDK, colorimetric mapping, color constancy, reflectance recovery, illumination estimation
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1 Introduction

Consumer digital cameras (i.e., point-and-shoot, DSLR,
mirrorless cameras and smartphones) are not tools de-

signed for scientific imaging, i.e., they are not scientific light-
measuring devices [1–3]. Yet their outputs—digital photos
and videos—constitute major sources of data for image pro-
cessing, colorimetry, computational photography, computer
vision, and machine learning. Typically, research utilizing
consumer camera imagery focuses on the development of
filters or algorithms that alter the visual appearance of im-
ages [4–7], or on the understanding of scene content [8–10]
and structure [11, 12] with downstream goals like recogniz-
ing, tracking, or counting objects. For many of these goals,
successfully recovering scene reflectance and/or illumination
is key (and often the main goal itself), but these tasks are
complicated by the fact that consumer cameras do not capture
colors in a standardized way [13, 14].

Each camera captures colors in its own, device-specific
color space. This is because manufacturers make different
design choices for each sensor, which materialize within the
limitations inherent to silicon-based semiconductor technol-
ogy [18]. As a result, each make and model of camera is
characterized by its unique set of spectral sensitivities that
define how that camera responds to light. Effectively, this
means that different cameras will register a different set of
RGB values for a given scene—even if the scene is imaged under
identical conditions [13, 19]. If the camera’s color bias could be
eliminated, the recovery of scene reflectance (e.g., for material
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Fig. 1. Examples of tasks that can become possible or easier with
known camera response. A) The spectrum of a uniformly lit outdoor
scene can be recovered using a color chart. Image from [13]. B) Un-
derwater, when the imaging distance is small, the diffuse downwelling
attenuation coefficient can be recovered using a color chart. Data
from [15]. C) When mapping one camera’s response to another, the
tedious pairwise imaging and alignment [13] or the costly supervised
learning steps [16] can be entirely omitted. Data from [17]. D) The
locus of a camera’s daylight chromaticities can be used to classify
whether the image was taken indoors or outdoors. Images from [17].
These results were obtained by implementing previously published
methods in a way that incorporates the spectral sensitivities of the
relevant camera. We did not have physical access to any of the
cameras used; see Supplementary Materials for details.

property estimation [20–22], spectral super-resolution [23, 24],
etc.) and/or scene illumination (e.g., for computational color
constancy [17, 25, 26], image relighting [27], data augmenta-
tion [28–30] etc.) could be achieved simpler and faster, and



with more consistent results across cameras. Figure 1 gives
some examples of tasks that could become possible or easier if
camera spectral sensitivities were known.

Unfortunately, however, manufacturers of consumer cam-
eras rarely make spectral sensitivity curves available, and
the burden falls on the researchers to derive them. Their
derivation (detailed in Section 2) requires the stimulation
of the camera’s sensor with monochromatic light across the
entire wavelength range to which it is sensitive. Such light
can be obtained through the use of a monochromator or a
spectrally-tuneable light source, but these optical instruments
are generally too specialized and expensive to be found in
most research labs. A seemingly lower cost and complexity
alternative is to use photos of calibrated color targets, but
with this indirect option comes a hidden cost: the implicit
requirement that the illumination under which the color tar-
get is imaged is also known. In practice, this either means
that the light source is calibrated, or its spectrum is measured
with a spectrophotometer; necessitating, again, that the user
has access to non-standard hardware (Table 1).

Even when the light spectrum is known, photos of color
charts do not guarantee a “good enough” estimate of curves
because there are too many unknowns in camera spectral
sensitivities and not enough color chart patches whose re-
flectances are linearly independent [31–33]. The ill-posed na-
ture of the problem introduces new challenges due to the need
to constrain the solutions to a “realistic” space (Table 1).
Furthermore, the commonly used image formation model does
not take into account the optoelectronics of the camera [34],
making it difficult to relate the captured RGB values to the
predicted ones. Finally, even if not limited by hardware or
cost, it is not uncommon that researchers work with imagery
captured by cameras that they actually do not have in their
possession. Consequently, the missing knowledge regarding
the spectral responses of consumer cameras hampers the
otherwise fruitful utilization of a consumer electronic device
in academic research.

Our own research in underwater computer vision has been
held back because we did not have the spectral sensitivities of
the ever-evolving set of consumer cameras that produce the
imagery we work with, and this motivated us to search for a
solution that did not require: 1) any specialized hardware, 2)
a color chart photo taken by the camera, or 3) physical access
to the camera itself. Unlike how it may seem at first glance,
this is not an impossible task—one simply has to be aware of
the wealth of publicly available data regarding colorimetric
mapping of consumer digital cameras. Here, we describe a
method that satisfies these requirements with reconstruction
errors that are, on average, as low as those that can arise
due to manufacturing imperfections between two copies of the
same camera.

Our key observation is the following: Among the tags
specific to Adobe’s Digital Negative (DNG) format [35], are
color transformation matrices prefixed ColorMatrix. These
3x3 matrices map camera-specific colors to the standard
CIE XYZ color space under a known illuminant. Calibrated
by the manufacturer, Adobe, or third-party companies and
appended to image metadata by the Adobe DNG Converter,
each DNG file includes at least one ColorMatrix tag, whereas

frequently, two matrices per camera can be found1. In the
common case when two matrices are available per camera,
they are generally calibrated under illuminant A (tungsten,
CCT≈2856K) and D65 (daylight, CCT≈6504K). We use
these matrices to construct a linear system of equations which
contains the sought spectral sensitivities in its solution space;
and this solution space can be further constrained using an
autoencoder trained on database of ground-truth spectral
sensitivities from the literature. Using this novel approach we
make the following contributions:

1) a zero-cost method with which to obtain reasonable
estimates of camera spectral sensitivities, and

2) predicted spectral sensitivities of more than 1, 000
makes and models of cameras that are currently in
the market.

In addition, we provide a thorough survey of indirect spectral
sensitivity estimation methods that have evolved over the last
three decades, corresponding with the advent of consumer
cameras as prevalent research tools.

2 Background and related work
The gold standard of spectral sensitivity estimation is the
use of a monochromator setup in an optically sealed envi-
ronment [34, 36–38]. A monochromator generates light in
narrowband segments, which is then shone directly onto the
sensor being calibrated or photographed from a calibration
tile with uniform reflectance. At the same time as the light
shines on the sensor, its spectrum is measured using a spec-
trophotometer, whose signal is then used as the reference for
recovering the camera’s response from its captured RGB values.
Such a setup is described in detail in [36].

While a monochromator setup provides a direct way of
measuring spectral sensitivity curves and yields results with
high accuracy, it consists of specialized hardware that can
be prohibitively expensive, or simply inaccessible, for many
research labs. Thus, over the last 30 years since consumer
digital cameras became commonplace tools in research labs,
numerous indirect methods, which aim to estimate a camera’s
spectral response at a lower cost or complexity than the
monochromator method, have been proposed (Table 1).

Despite the apparent diversity in techniques for indirect
spectral sensitivity reconstruction, their core strategy rarely
deviates from the same underlying principles, and our method
is no different. At the outset, the sought sensitivity functions
are described as a solution to a system of equations, typically
linear or quadratic, which generally turns out to be underde-
termined in the sense of admitting infinitely many solutions.
Additional constraints such as non-negativity, smoothness
and unimodality that are then assumed to hold for a broader
family of spectral sensitivities are consequently employed with
the aim of discarding spurious and “unrealistic” candidate
solutions. Finally, the approximate sensitivity functions are
obtained by solving an optimization problem whose objective
function is comprised of two terms: one that originates from
the system of equations and is specific to the camera under
consideration, and one that corresponds to additional assump-
tions made about the space of functions that presumably

1. Since the release of DNG version 1.6.0.0, a third color matrix is
also specified for some cameras [35].



TABLE 1
A summary of indirect spectral sensitivity estimation methods developed for digital cameras in the last 30 years and their requirements.

Reference Approach Specialized hardware
required?

Camera
required?

Chart
required?

Light
known?

Hubel et al. (1994)[39] Linear regression, rank deficient
pseudoinverse, Wiener method

Tungsten light, color
filters, spectrophotometer

Yes Yes Yes

Hardeberg et al. (1998)[40] Pseudoinverse, rank deficient
pseudoinverse

No Yes Yes Yes

Finlayson et al. (1998)[41] Constrained linear regression No Yes Yes Yes
Barnard & Funt (1999)[42] Constrained linear regression Multiple illuminants, color

filters, spectroradiometer
Yes Yes Yes

Dyas (2000)[43] SVD + regularization No Yes Yes Yes
Carvalho et al. (2001)[44] Learning with generalized cross

validation function
No Yes Yes Yes

Barnard & Funt (2002)[25] Constrained linear regression Multiple illuminants, color
filters, spectroradiometer

Yes Yes Yes

Alsam & Fin-
layson (2002)[31]

Feasible set No Yes Yes Yes

Quan et al. (2003)[45] Iterative multiscale bases No Yes Yes Yes
DiCarlo et al. (2004)[46] Emissive target LEDs, opto-electronics Yes Emissive Yes
Ebner (2007)[47] Evolution strategy Spectrometer Yes Yes Yes
Mauer & Wueller (2009)[48] Narrowband interference filters Filters and mount Yes No Yes
Zhao et al.(2009)[49] Optimum basis functions Spectrometer Yes Yes Yes
Rump et al. (2011)[50] Color specularity & light

nonuniformity + optimization
Spectrometer Yes Yes Yes

Pike (2011)[51] Parameterization of[41] + UV Spectrometer, UV target Yes Yes Yes
Bedarkar (2011)[52] Optimization Blackbody furnace Yes No Planck’s

law
Han et al. (2012)[53] Fourier bases Fluorescent chart Yes Yes No
Jiang et al. (2013)[54] PCA None Yes Yes Yes/daylight
Prasad et al. (2013)[55] Optimization Multiple illuminants Yes Yes No
Kawakami et al. (2013)[56] Sky turbidity, need clear sky &

camera-sun direction + PCA
No Yes No No

Bongiorno et al. (2013)[57] Linear variable edge filter
(LVEF)

LVEF, smooth light,
spectrometer, Spectralon

Yes No Yes

Huynh & Robles-
Kelly (2014)[58]

Optimization No Yes Yes No

Macdonald (2015) [59] Emissive target + transmission
filters

Spectrometer, emissive
target, color filters

Yes Emissive Yes

Bartczak et al. (2015) [60] Emissive target Spectrometer, spectrally-
tuneable light, diffuser

Yes Emissive Yes

Finlayson et al. (2016)[61] Rank-based + sine bases No Yes Yes Yes
Manakov (2016)[62] Band-pass filters Color filters, integrating

sphere, spectrometer
Yes No Yes

Zhang et al. (2017)[63] Regularized least squares Hyperspectral sensor Yes No No
Chaji et al. (2018)[64] Neural network No Yes Yes Daylight
Karge (2018)[65] Diffraction image + least squares Grating, light, radiometer Yes Yes Yes

Burggraaff et al. (2019)[1] Pocket spectrometer + solar
irradiance model

Spectrometer, halogen
lamp

Yes No Yes

Zhu et al. (2020)[66] Orthogonal test + optimization Spectral irradiance
colorimeter, LCD display

Yes Yes Yes

Toivonen &
Klami (2020) [67]

Diffraction imaging + optimiza-
tion

Diffuser, diffraction
grating, color filters

Yes Yes Yes

Ji et al. (2021) [68] Compressive sensing Xenon-arc lamp Yes Yes Yes
Tominaga et al. (2021)[69] PCA & color patches Incandescent light, Munsell

white paper, Spectralon
Yes Yes Yes

Ma et al. (2021)[70] Constrained least squares + sine
bases

No Yes Yes Yes

Xu et al. (2022)[71] Rank-based Multiple illuminants Yes Yes Yes
Fan & Ronnier (2023)[72] Emissive target + PCA OLED display, radiometer Yes Emissive Yes
Ours Color matrices + autoencoder No No No No



contains the sought sensitivities. We will refer to these terms
as the specific term and the universal term, respectively; the
former depending on the data available from the experimental
setup, and the latter depending on assumptions that may or
may not hold true, since nobody really knows what spectral
sensitivities of future cameras could look like (although we
can probably expect them to become more colorimetric).

There is an inherent interplay between these two terms in
the sense that the universal term compensates for the lack of
information in the specific term. Indeed, using a monochro-
mator yields nearly perfect information for the specific term,
rendering the universal term unnecessary. Conversely, if no
experimental data is available from the camera under consid-
eration, then the best approximation one could hope for would
be some kind of “averaging” of all known spectral sensitivities,
which constitutes an extremely strong assumption on the
space of candidate functions.2 With this trade-off in mind,
we set out to devise a method that achieves the following:

1) the experimental setup required by the specific term
is minimal; and

2) the universal term is as unassuming as possible while
ensuring 1).

We propose a method that attains 1) by constructing the
specific term using publicly calibration matrices, which does
not even require the user to own the camera in question, while
2) is achieved by training an autoencoder on a database of
known spectral sensitivities.

2.1 The image formation model and its challenges
In this subsection, we discuss the physical image formation
model that gives spectral sensitivity functions their meaning;
the discretized version of this model is by far the most
common choice for constructing the specific term in the opti-
mization problem used for spectral sensitivity reconstruction.

For any wavelength λ, we denote the sensitivity of color
channel k ∈ {r, g, b} in a device d to light of that wave-
length by S

(k)
d (λ). If a target object with reflectance R(λ)

is photographed by d under some illuminant L(λ), then the
resulting pixel intensity for channel k is given by

I
(k)
d =

∫ ∞

0
R(λ)L(λ)S

(k)
d (λ)dλ . (1)

The sensitivity S
(k)
d is typically zero outside of the visible

spectrum 400 – 700nm, in which case the above integral only
needs to be considered on this interval. Doing so makes it
possible to discretize the above image formation model over n
uniformly spaced values of λ as follows:

I
(k)
d ≈

n∑
i=1

R(λi)L(λi)S
(k)
d (λi)∆λ , (2)

2. The particular kind of “averaging” would depend on the tar-
geted error metric. We computed such an “average” with respect to
the relative full-scale error (see Section 4), minimizing the average
of this error across our dataset. This yielded 21% median error,
which is much worse than the 8% achieved by our method. This
clearly demonstrates that color matrices do contain a lot of useful
information about spectral sensitivities.

where

∆λ =
700− 400

n− 1
nm =

300

n− 1
nm and

λi = 400nm + (i− 1)∆λ for i = 1, . . . , n .

Rewriting (2) in matrix form yields:

Id ≈ RLSd , (3)

where

Id =
[
I
(r)
d I

(g)
d I

(b)
d

]
∈ R1×3 ,

R =
[
R(λ1) · · · R(λn)

]
∈ R1×n ,

Sd =


S
(r)
d (λ1) S

(g)
d (λ1) S

(b)
d (λ1)

...
...

...
S
(r)
d (λn) S

(g)
d (λn) S

(b)
d (λn)

 ∈ Rn×3 and

L =


L(λ1) 0 · · · 0
0 L(λ2) · · · 0
...

...
. . .

...
0 0 · · · L(λn)

∆λ .

There is of course no reason to restrict this setting to a single
target object with a single reflectance function R(λ). In the
general case of m objects, we simply get R ∈ Rm×n and
Id ∈ Rm×3, i.e., one row per target object. Finally, even more
equations can be obtained by taking multiple photographs
under different illuminants.

In the context of spectral sensitivity reconstruction, this
suggests an experimental setup where the camera under con-
sideration is used to take photographs of objects with known
reflectances under known light conditions. Indeed, if n linearly
independent equations are obtained this way, then this setup
is essentially equivalent to having a monochromator, as we can
then just solve Eq. (3) for Sd. Unfortunately, this conceptually
simple approach suffers from a few practical issues:

1) The pixel intensities Id in the photographs will always
be subject to noise due to the idealized nature of the
underlying image formation model in Eq. (1) that
omits the optoelectronics of the camera [34, 40], not to
mention the discretization error introduced in Eq. (2).

2) The illuminant L under which the pixel intensities Id
are obtained is typically not known; and controlling L
often requires specialized hardware (see Table 1).

3) Knowing the reflectances R requires a special object
like a calibrated color chart in the photograph(s).

4) The linear system does not admit a unique solution
as long as m < n. Although it is in principle possible
to obtain m = n target objects with known linearly
independent reflectances, no cheap and convenient
options seem to be available on the market today.
The common color charts used in photography, for
example—even those containing a large number of
different colors—are printed using just a handful of
unique pigments, which essentially limits the possible
number of linearly independent reflectances to the
number of pigments used.3

3. The surface on which the colors are printed could contribute
with one reflectance as well.



In our spectral sensitivity reconstruction method, we rely
on an alternative, previously overlooked linear system (see
Section 3.1) which sidesteps all but the last of these challenges.
In order to tame the multitude of candidate solutions arising
from the fourth challenge, we employ an autoencoder trained
on a database of known spectral sensitivities, which is used to
measure how “realistic” any given candidate solution is.

3 Proposed method
In this section we give a detailed description of our method
for indirect spectral sensitivity reconstruction. We begin with
a brief introduction to color matrices as well as the linear
system of equations that can be obtained form them.

3.1 Color matrices as a source for equations
In 2004, Adobe introduced the Digital Negative (DNG), an
open-source image file format for storing RAW image in-
formation from images created with different cameras [35].
Each DNG file includes at least one ColorMatrix tag, whereas
frequently, two matrices per camera can be found. These
matrices map camera colors to the CIE Standard Observer,
and are calibrated under illuminants with sufficiently far apart
correlated color temperatures (CCT), such as illuminant A
(tungsten, CCT≈2856K) and D65 (daylight, CCT≈6504K).

For any device d and illuminant L ∈ Rn×n, one defines the
color matrix Cd(L) ∈ R3×3 as the least-squares solution to
the matrix equation

LSXYZCd(L) = LSd ,

where XYZ refers to the CIE XYZ standard observer. Letting
A+ = (A⊤A)−1A⊤ ∈ Rt×s denote the pseudoinverse of any
full-rank matrix A ∈ Rs×t, we can write

Cd(L) = (LSXYZ)
+LSd . (4)

For multiple illuminants L1, . . . ,Lℓ, we can extend (4) toCd(L1)
...

Cd(Lℓ)

 =

(L1SXYZ)
+L1

...
(LℓSXYZ)

+Lℓ

 Sd , (5)

which will for us serve as the substitute for (3). Notice that (5)
yields 9 equations for each known calibration matrix, amount-
ing to 9ℓ equations in total. In practice, calibration matrices
are made available only for illuminants A and D65, i.e., ℓ = 2.
It is worth noting that the equations in Eq. (5) are far more
practical than those in Eq. (3). This is because the former
can be constructed entirely from publicly available data, while
the latter requires one to obtain photographs of objects with
known reflectances under a controlled or estimated illuminant.

Adobe matrices can be acquired as follows: For a given
RAW image, the available color calibration matrices will be
appended to the image metadata when the image is processed
through the Adobe DNG Converter. These matrices can then
be obtained via a viewer, e.g., ExifTool [73]. This option still
does not necessitate having physical access to the camera in
question, as example RAW images from many cameras can
be freely found online (see [74] for an excellent source). We
obtained the color matrices for 1, 013 cameras for which the
Adobe DNG Converter version 12.4.0.555 supports, using the
code provided by [75]. Some statistics for these cameras are
shown in Fig. 2 for manufacturers who had ≥ 5 cameras in
the dataset.

3.2 Optimization problem
To begin with, assume that we describe the sought spectral
sensitivities Sd ∈ Rn×3 as a solution to a linear system
ASd = B for some known matrices A ∈ Rm×n and B ∈ Rm×3.
For example, this linear system could be (3), or (5), or a
combination of the two. Independently of which linear system
it is, we can assume that is underdetermined, i.e., m < n;
otherwise, we can just solve the system and there is nothing
more to do. To address the insufficient number of equations
at our disposal, we follow the usual practice of inventing
a function F that maps any potential spectral sensitivity
candidate S ∈ Rn×3 to a single real number that is supposed
to indicate how “realistic” this candidate is. For example, if we
assume that spectral sensitivities are generally rather smooth,
then we could choose F (S) = ‖DS‖2, where D ∈ Rn×n is
the second derivative matrix and ‖·‖2 is the Frobenius norm;
variants of this were explored in e.g., [25] and [58].

Being equipped with the aforementioned system of equa-
tions as well as the function F , we combine the two in in the
formulation of the final optimization problem

argmin
S∈Ω

D(AS,B)︸ ︷︷ ︸
specific term

+ F (S)︸ ︷︷ ︸
universal term

, (6)

where Ω ⊆ Rn×3 is the feasible domain and D is some
distance function on Rm×3. In a sense, the whole field of in-
direct spectral sensitivity reconstruction can be viewed as the
search for the right combination of the two terms in Eq. (6),
hoping that an optimization algorithm would converge to a
solution not too far off from the sought Sd. Before proceeding
to our take on this framework, we ought to mention that the
system of equations in the specific term does not have to be
linear; an example of a quadratic system can be found in [41].
Furthermore, the two terms can of course be summed in a
weighted manner—we have omitted the weight coefficients for
a cleaner presentation.

Having presented the general optimization framework for
spectral sensitivity reconstruction, let us introduce our pro-
posed realization of it. For the specific term, we rely on the
linear system in Eq. (5) based on color matrices, choosing

A =

[
A1

A2

]
=

[
(LASXYZ)

+LA
(LD65SXYZ)

+LD65

]
, B =

[
B1

B2

]
=

[
Cd(LA)
Cd(LD65)

]
,

where LA and LD65 denote the illuminants A and D65 re-
spectively (see Section 3.1). For the feasible domain and the
distance function we respectively use

Ω = {S | S 6= 0 has no negative entries} and

D(AS,B) =
2∑

i=1

∠(AiS,Bi), where

∠(U,V) ≜ arccos
( U · V
‖U‖2‖V‖2

)
,

and U ·V denotes the dot product of U and V seen as vectors.
Finally, our universal term takes the form

F (S) = ∠(S, Aw(S)) , (7)

where Aw is an autoencoder with weights w trained on a
database S ⊂ Rn×3 of known spectral sensitivities. Details
about the chosen architecture of A, as well as the training
process, can be found in Section 3.3.
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Fig. 2. We extracted color matrices for 1, 013 digital cameras from the Adobe DNG Converter and manually compiled metadata for each
camera including camera type (e.g., DSLR, compact, mirrorless, cell phone), sensor type (CMOS or CCD), sensor size (in mm), and release year.
Manufacturers with fewer than 5 cameras were omitted. See Supplementary Materials for details.

3.3 Autoencoder
Letting S ⊂ Rn×3 denote a database of ground-truth spec-
tral sensitivities, the weights w of our outoencoder Aw are
obtained as a solution to the optimization problem

argmin
w

1

|S|
∑
S∈S

∆(S, Aw(S)) , (8)

where for any U = [Ur,Ug,Ub] and V = [Vr,Vg,Vb] in Rn×3

∆(U,V) =

∥∥∥∥∥
[Uk − Vk

‖Uk‖2

]
k=r,g,b

∥∥∥∥∥
2

.

The choice for ∆ might come across as somewhat peculiar,
but it simply turns out to work better than ∠(·, ·), which
would be more consistent with our choice of the universal term
in Eq. (7). Another choice could be ∆(U,V) = ‖U − V‖2,
which is essentially what we are doing, except that the scaling
by ‖Uk‖−1

2 is introduced to make Aw assign roughly equal
importance to the three color channels.

The description thus far constitutes the conceptual core of
of our training process, but we have omitted two important
details, both related to the small size of our database S (see
Table 4). First and foremost, it has shown to be absolutely
crucial for our method to use regularization in order to avoid
dramatic overfitting; in particular, we use weight decay and
dropout (for parameter choices see Table 3). Secondly, the
stability of our method seems to improve with addition of
modest data augmentation. During training, every time we
draw a ground-truth sensitivity S from S, we randomly scale
and “roll” its channels by applying the map S 7→ GSH where
H ∈ R3×3 is a diagonal matrix whose diagonal entries are
drawn uniformly and independently from the interval [h, 1]
for a real-valued parameter 0 < h ≤ 1. The matrix G ∈ Rn×n

is a special kind of random permutation matrix whose i-th
column is 0 in every entry except for the index

(i− 1 + u mod n) + 1 ,

where the value is 1; here u is a random integer drawn
uniformly and independently for every column of G from
the set {−g, . . . , g}, where 0 ≤ g < n is an integer-valued
parameter. The two parameters h and g are chosen by the
user and decide the level of data augmentation. Intuitively,
h decides by how much we can randomly scale the channel
peaks up and down, while g decides by how much we can shift
them left and right. Our choice for these parameters can be

found in Table 3, while the neural network architecture of the
autoencoder Aw is presented in Table 2. Finally, we ought
to mention that all ground-truth sensitivities S ∈ S were
normalized by their maximal value (before augmentation).

TABLE 2
Architecture of the autoencoder Aw. Information travels from top to
bottom. In the table N = 3n, and p indicates that dropout with the
specified retention probability was applied after the corresponding

layer during training.

Layer type Inputs Outputs Activation
Linear (p = 0.2) N 4N ReLU }

EncoderLinear (p = 0.5) 4N 2N ReLU
Linear 2N 6 None
Linear 6 2N ReLU }

DecoderLinear (p = 0.5) 2N 4N ReLU
Linear 4N N None

TABLE 3
Training details for weights w in (8). Explanations for channel scaling

and rolling (data augmentation) can be found in Section 3.3.

Parameter Value
Framework PyTorch v1.11.0
Optimizer SGD
Channel scaling (h) 2 · 10−1

Channel rolling (g) 2
Learning rate (lr) 10−1

Momentum 5 · 10−1

Weight decay 10−4

Scheduler ReduceLROnPlateau
Scheduler decay 5 · 10−1

Scheduler patience 2 · 103
Stop criterion lr < 10−5

3.4 Ground-truth database
The database S consists of 51 spectral sensitivity functions
that we compiled from the literature, which were reported
to have been obtained directly using monochromatic light
(Table 4). If the authors did not make their data available
in a table, we digitized them from plots using DataThief [76].

We excluded some cameras from the sources listed. Specif-
ically, we excluded all cameras for which Adobe DNG Con-
verter version 12.4.0.555 did not provide a ColorMatrix tag.
In some cases, the presented curves were scaled by the authors
so as to make the maximal value in each channel equal to



one—these were excluded from our dataset due to the across-
channel nature of our approach. If a camera’s curves showed
sensitivity to a wider range than the VIS (i.e., UV or IR
filters were removed), we omitted that camera. Finally, we
also excluded discontinued cameras with atypical curves, such
as the Kodak DCS series (a poignant outcome given their
pioneering role in the history of digital photography).

Among the resulting set of 51, we had 9 cameras whose
sensitivities were derived by more than one source (Fig. 3).
The relative full-scale errors between these duplicates range
between ≈ 2.4 − 17%, which are likely due to measurement
errors and uncertainties; this can be quite large for some
wavelengths, as demonstrated by Darrodi et al. [36]. It is also
possible, however, that two copies of the same make and model
camera have quantifiably different spectral sensitivities due to
the imperfections of the manufacturing process. This indeed
seems to be the case for two Nikon Coolpix 5700 cameras that
were reportedly purchased simultaneously and characterized
using the same experimental setup by Stevens et al. [77] (note
that Adobe does not provide matrices for this camera but we
retained it in our database).

TABLE 4
Our compiled ground-truth spectral sensitivity database of 51

cameras. All original sources report estimation using a
monochromator, except for those that used a liquid crystal

modulator+, diffraction grating∗, and narrowband filters† to obtain
monochromatic light.

Camera make & model Source
Canon 1Ds II Akkaynak et al. [78]
Panasonic DMCL X5, Sony
NEX7 Berra et al. [79]
Canon 1Ds II, Nikon D3 Brady & Legge [80]
Samsung Galaxy S8 Burggraaff et al. [1]
Canon 10D, Nikon D70 Huynh & Robles-Kelley [81]+
Canon 1D III, Canon 20D,
Canon 300D, Canon 40D, Canon
500D, Canon 50D, Canon 5D II,
Canon 600D, Canon 60D, Nikon
D200, Nikon D3, Nikon D300s,
Nikon D3X, Nikon D40, Nikon
D50, Nikon D5100, Nikon D700,
Nikon D80, Nikon D90, Olympus
EPL2, Pentax K5, Pentax Q,
Sony NEX5N

Jiang et al. [54]

Canon 10D, Canon 5D II, Canon
5D, Nikon D1x, Nikon D70 Kawakami et al. [56]
Canon 400D Lebourgeois et al. [82]∗
Canon 40D, Leica M8, Nikon
D200, Nikon D700, Panasonic
DMCL-X3

Mauer &Wueller [48]†

Nikon 5700 (2 copies) Stevens et al. [77]
iPhone 8, iPhone X, iPhone 11,
iPhone 12 Pro Max, Samsung
Galaxy S7 Edge, Samsung
Galaxy S9, Samsung Galaxy
S20

Tominaga et al. [69]

4 Results
When it comes to indirect methods for spectral sensitivity
reconstruction, it is generally difficult—if not impossible—
to formulate any concrete theoretical guarantees about re-
construction accuracy. The main reason for this is that all
contemporary models for the space of spectral sensitivity
functions substitute the lacking theoretical understanding of

Fig. 3. Cameras in our database for which two ground-truth deriva-
tions exist. Percentages indicate relative full-scale error between esti-
mations reported in two different publications for each camera. These
differences probably arise from measurement errors and uncertainties
associated with the experimental setup employed by each party. Note,
however, that the case for the two Nikon 5700 Coolpix cameras (*)
is slightly different. These cameras were reported to be purchased at
the same time and their spectral sensitivity measurements were made
with the same experimental setup [77]. Thus, potentially, the 6.96%
error between their spectral sensitivities primarily represents the error
resulting from the imperfections of the manufacturing process and/or
the variability of the sensor materials.

this space with convenient assumptions that may or may not
hold in practice. In the case of our method, it is assumed that
this space can be learned by an autoencoder with a particular
neural network architecture, which doesn’t make theoretical
analysis any easier. In acknowledgment of this, we proceed
with the standard approach of assessing the effectiveness of
our method by empirical validation.

Our validation procedure is a form of leave-one-out vali-
dation and can be summarised as follows: For every device
d represented in our database S ⊂ Rn×3, we train an
autoencoder A(d) on S \ {Sd}. We then proceed by solving
the optimization problem discussed in Section 3.2, i.e.,

argmin
S

α
2∑

i=1

∠(AiS,Bi) + β∠(S, A(d)(S)), where[
A1

A2

]
=

[
(LASXYZ)

+LA
(LD65SXYZ)

+LD65

]
and

[
B1

B2

]
=

[
Cd(LA)
Cd(LD65)

]
,

and comparing the found solution Ŝd to the ground-truth Sd.
Here, α, β ≥ 0 are just weight coefficients; their values, as
well as other optimization parameters can be found in Table 5.
The comparison is done similarly to [66] with respect to the
average relative full-scale error across the three color channels,



i.e.,

RE(Ŝd, Sd) =
1

3

∑
k∈{r,g,b}

RMSE(Ŝ[∗,k]
d , S[∗,k]

d )

max S[∗,k]
d

, where

RMSE(Ŝ[∗,k]
d , S[∗,k]

d ) =

√√√√ 1

n

n∑
i=1

(Ŝ[i,k]
d − S[i,k]

d )2

is the root mean square error; here the superscript [i, k]
means taking the entry in the i-th row and the k-th column,
while [∗, k] refers to the k-th column in its entirety. As
mentioned, our database S contains a few duplicate “ground-
truth” sensitivities for the same camera. Whenever this is
the case, we leave out all of these duplicates when training
the autoencoder during the validation (but errors are still
included). The resulting error histogram can be found in Fig. 4
and our best, median, and worst results are shown in Fig. 5.
We also performed validation where we left out one brand at
a time—the results were similar to those in Fig. 4 (e.g. 7.08%
median error across all Canon cameras). The rest of the results
are in the Supplementary Material.

It is difficult to compare this error range to other methods,
as there is no consensus in the literature about which error
metric should be used, and many of the common error metrics
are scale-dependent. One value with which we can compare
is the reported 8.54% average relative full-scale error across
channels from Zhu et al. [66] for Canon EOS 600D; this is
slightly worse than our error of 6.87% with respect to the
ground-truth from Jiang et al. [54]. The method of Zhu et
al. [66] required a camera and specialized hardware (Table 1).

We wondered if reconstruction accuracy would improve if
we also used a color chart photo for a given camera. We used
the outdoor images from the NUS dataset [17] all of which
contained a ColorChecker, and included the equations from
the image formation model (3) into the specific term of our
optimization problem. We approximated the light by the CIE
standard daylight model, parameterized by CCT, which we
treated as an additional unknown to be solved for in our
optimization problem. Our reconstruction accuracy did not
improve by any significant amount (< 0.5%). Most likely, this
was because the color chart offered little new information that
was not captured by the color matrices.

Fig. 4. A) Histogram of relative full-scale errors observed during
leave-one-out validation of our method. The two ground-truths of
Nikon 5700 from Stevens et al. [77] were excluded from the predic-
tions as well as from training data due to missing color matrices. B)
Breakdown of errors per color channel—the median errors are 9.3%,
6.3% and 8.3% for red, green and blue channels, respectively.
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Fig. 5. Our best (first row), median (middle row), and worst (bottom
row) results for the 51 cameras in our ground-truth set. The rest of
the results for the ground-truth dataset, as well as predictions for
1, 000+ cameras are given in Supplementary Material.

TABLE 5
Optimization parameters used to produce Fig. 4.

Parameter Value
Framework PyTorch v1.11.0
Optimizer SGD
Specific term coeff. (α) 102

Universal term coeff. (β) 2 · 10−1

Learning rate (lr) 8 · 10−4

Scheduler ReduceLROnPlateau
Scheduler decay 5 · 10−1

Scheduler patience 2 · 103
Stop criterion lr < 4 · 10−4

5 Discussion
We introduced a zero-cost framework with which to reason-
ably estimate the spectral sensitivities of consumer cameras.
Our reconstruction errors ranged from 4−17% with a median
of ≈ 8% (Fig. 4), which is comparable to the errors that might
arise due to sensor fabrication flaws or irregularities when
two copies of the same are being manufactured (see Nikon
7500 data in Fig. 3). Since our framework relies on publicly
available information, our current results can be improved as
more, and higher-quality data become available, for instance,
when more ground-truth curves are published by researchers,
or color matrices for more illuminants are derived by Adobe
or others. We also provided predictions of camera responses
for 1, 000+ cameras for the use of the scientific community.

A lot of value can be added to scientific research with the
knowledge of the spectral sensitivities of the camera at hand.
This information can enable objectivity and repeatability of
color capture, better colorimetric mapping, and create the



possibility of linking RGB values to spectral quantities in the
physical world. We demonstrated some of these cases in Fig. 1
where we modified the implementations of previously pub-
lished methods to accommodate the spectral sensitivities of
the cameras used. Moreover, having the spectral sensitivities
reduces the number of unknowns in a given problem by 3n
(where n represents the number of chosen wavelength steps),
thereby simplifying solutions in numerous scenarios.

For example, illuminant spectrum estimation can be-
come a simpler problem with a more accurate solution that
recovers the spectrum of the physical illuminant, not just the
camera-specific RGB white point (Fig. 1A). Additionally, as
suggested by Cheng et al. [17], algorithms that use specular
and shadow pixels to estimate the illuminant through distin-
guishing between specularities and bright surfaces, and shades
and dull surfaces, can be refined.

Similarly, reflectance spectrum estimation also be-
comes simpler, especially outdoors where light can be rep-
resented using the one-parameter CIE daylight model. Un-
derwater, image formation is complex, but in the cases
where haze can be neglected and Eq. (1) applies, the spec-
trum of the diffuse downwelling attenuation coefficient
can be recovered using a color chart and the CIE day-
light model (Fig. 1B). It should be kept in mind, however,
that metamerism and the low-dimensionality of spectral re-
flectances on most color charts still make the estimation of
spectral quantities challenging (see Supplementary Material).

Having access to the spectral sensitivities of many cam-
eras, not all of which may be at hand, can also add a lot
value to science. For example, realistic training and/or aug-
mentation data can be generated for image colorization,
jpg-to-raw [83], and raw-to-raw [13] mapping problems.
Spectral super-resolution, a task which obtains hyper-
spectral images from a single RGB image and generally
requires camera curves to be known [84], will be possible
to apply to any consumer camera image. Similarly, many
cameras will suddenly become candidates for hyper-spectral
super-resolution, the task of fusing a hyperspectral image
with low spatial resolution with an RGB image of high spa-
tial resolution, which also requires camera responses to be
known [56, 85, 86]. It will also be trivial follow the method of
Oh et al. [23] to build a Do-it-Yourself hyperspectral imaging
system by combining several different consumer cameras,
since the dataset we release contains the peak wavelengths
of (almost) all the cameras in today’s market.

Perhaps the most curious application of our predicted
camera responses is time travel rephotography, which is
the projection of faded, black-and-white photos into the space
of modern-day high resolution sensors [87]. It will be possible
to re-make iconic photographs, like that of Abraham Lincoln,
in the color space of any modern-day digital camera, simu-
lating that camera’s in-camera photofinishing workflow using
the pipeline from [88], and even comparing how each camera
in the market would have portrayed the notable persona.

While we are excited about all the capabilities our work
will enable, we acknowledge that our method has limitations.
First of all, we noticed large differences in the reconstruction
errors on the same camera due to the source of derivation
(Fig. 3), which means that “ground-truth” information should
be interpreted with caution. For example, our reconstruction
for Canon 5D Mk II yielded only 6.20% error relative to

the ground-truth from Jiang et al. [54], but 17.24% error
relative to ground-truth from Kawakami et al. [56], which
is actually our worst result (see Fig. 6). Does the sensor
in this Canon model show such a large variation? Or was
Kawakami’s derivation flawed? We cannot answer, and we
caution the reader to be aware of potential measurement
errors and uncertainties when using publicly available data.
Also, we assume, as does the Adobe DNG Converter, that
every copy of a given make and model camera has identical
spectral sensitivities. The case of Canon 5D Mk II could be one
example where this assumption fails. However, we believe that
in practice differences between sensors of identical cameras
are small, and that the Nikon 5700 example in Fig. 3 is more
typical of this situation, so our general approach is justified.
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Fig. 6. Leave-one-out validation results for two different “ground-
truths” of Canon 5D Mk II. The large discrepancy in reconstruction
error could suggest and experimental error in Kawakami et al., but
further investigation is needed for a definitive conclusion.

Lastly, we did not have ground-truth data for most of the
1, 000+ cameras we presented, because if such data were avail-
able, we would not need to write this paper. Despite the lack
of ground-truth, we have confidence in the peak wavelengths
and the general shapes of the reconstructed curves due to the
way Adobe’s color matrices are derived. Even without ground-
truth, this information can already be useful, serving as a
feasible initial guess for problems where camera responses are
unknown, or potentially guiding the purchase of a camera if
sensitivity for certain wavelengths are desired.
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