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1 Details for the generation of results in Fig.1
Below, we describe how the results in Fig. 1 of main text were
generated using camera spectral sensitivities.

In all examples, the camera RAW images were processed
through the Adobe DNG Converter to obtain DNG files, and
these were then run through steps 1-4 of the digital camera
processing pipeline of Karaimer and Brown [1], which allows
users access into the Adobe DNG SDK. This process results
in a demosaicked linear tiff image with no additional modifi-
cations. The average reflectance spectra of the ColorChecker
patches were obtained from Babel Colour and the DGK Kolor
Kard patches were obtained from [2].

The error between actual and predicted RGB values were
calculated using the angular error:

err = cos−1

(
RGBactual ·RGBpredicted

∥RGBactual∥∥RGBpredicted∥

)
(1)

and this is used as the objective function for parts A and
B.

1.1 Fig.1 A
The image used is Canon600D_0195.CR2 from the NUS
dataset of Cheng et al. [3]. The camera used was a Nikon D40,
whose spectral response is made available by Jiang et al. [4].
We discretize this spectral response into n = 31 values in the
range 400-700 nm, in steps of 10nm.

This dataset also provides the coordinates of the Col-
orChecker and all its patches, which we used to extract the RGB
values of each patch from the linear tiff image. We modeled
daylight by the CIE Daylight Model, which is parameter-
ized only by the correlated color temperature (CCT). We
formulated an optimization problem in which we minimized
the angular RGB between the m = 24 actual RGB values
(extracted from the ColorChecker) and the predicted RGB
values error (Eq. 1 above). The predicted RGB values were
obtained using Eq. (1) in main text, with the light spectrum
obtained from the CIE daylight model, with the only unknown
being CCT. The optimization was implemented in Matlab,
using the ‘fmincon’ function, using a lower bound of 4,000K
and an upper bound of 25,000K for CCT. The resulting
temperature found for the example shown in Fig. 1A was
5,554 K (approximately CIE D55). The precise optimization
problem is

argmin
4000K≤T≤25000K

∥[∠(I[k,∗]d , (RLT Sd)
[k,∗])]1≤k≤m∥2 ,

where the superscript [k, ∗] means taking the k-th row and
LT ∈ Rn×n is a diagonal illuminant matrix whose diagonal is
obtained by discretizing the CIE illuminant series D, i.e.

LT (λ) = L0(λ) +M1(T )L1(λ) +M2(T )L2(λ) , where
M1 = (−1.3515− 1.7703xD(T ) + 5.9114yD(T ))/M ,

M2 = (0.0300− 31.4424xD(T ) + 30.0717yD(T ))/M ,

M = 0.0241 + 0.2562xD(T )− 0.7341yD(T ) ,

yD(T ) = −3.000xD(T )2 + 2.879xD(T )− 0.275,

xD(T ) =


0.244063 + 0.09911 103

T + 2.9678 106

T 2 − 4.6070 109

T 3

if 4000K ≤ T ≤ 7000K

0.237040 + 0.24748 103

T + 1.9018 106

T 2 − 2.0064 109

T 3

if 7000K < T ≤ 25000K

.

1.2 Fig.1 B
The image used is _DSC0098.tif from the dataset of Akkay-
nak et al. [2]. The camera used was a Nikon D90, whose
spectral response is also made available by Jiang et al. [4].

Note that the color chart used here is not the Mac-
beth ColorChecker, but the waterproof DGK KolorKard. The
m = 18 color chart patches were manually extracted and the
corresponding RGB values were extracted from the linear tiff
image.

Then, the image formation from Eq. (1) of main text
was used with the observation that the ambient light will be
exponentially attenuated, i.e.,

Ldepth(λ) = Lsurface(λ)e
−KD(λ)×y, (2)

where y is depth and KD(λ) is the diffuse downwelling
attenuation coefficient, which is the quantity we would like
to estimate. The depth gauge in the photo shows y = 16.2
meters.

For surface light, it is generally safe to assume any broad-
band light (i.e., any CIE D-series light), as the water will
attenuate all light to the same monochromatic spectrum, so
here we assumed CIE D65. Again using Eq. (1) from main text
to calculate the predicted RGB values, we minimize the angular
error between predicted and observed RGB values using the
‘fmincon’ function in Matlab using a lower bound of 0 and an
upper bound of 1 m−1 for KD(λ).

It is important to note here that KD(λ) cannot be solved
for using 31 unknowns because this color chart has much fewer
linearly independent patches. By trial and error, we ended up

https://babelcolor.com/
https://cvil.eecs.yorku.ca/projects/public_html/illuminant/illuminant.html
https://cvil.eecs.yorku.ca/projects/public_html/illuminant/illuminant.html
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using discretization resolution n̂ = 10 to approximate KD(λ)
by a linear interpolation K̂D(λ) of a vector K ∈ Rn̂. The
precise optimization problem is

argmin
K∈Rn̂

min(K)≥0
max(K)≤1

∥[∠(I[k,∗]d , (RLKSd)
[k,∗])]1≤k≤m∥2 , (3)

where LK ∈ Rn×n is the diagonal matrix whose diagonal is
obtained by discretizing LD65(λ)e

−K̂D(λ)×y, where K̂D(λ) is
the linear interpolation of K.

1.3 Fig.1 C
The cameras used in this example were a Nikon D40, and
Canon600D, whose spectral responses were both made avail-
able by Jiang et al. [4].

To do the raw-to-raw mapping example here, we followed
the illumination-invariant method of [5]. We skipped the
pairwise calibration step, since we do not have physical access
to the cameras. Instead, we used the spectral responses of
both cameras, and published spectral power distributions of
23 standard CIE illuminants (namely CIE F1-12, A,B,C, D40-
D75 illuminants) to compute a global mapping between the
two cameras as described in [5], using Macbeth ColorChecker
reflectances.

Next, we obtained the “white-balanced’ mapping by white
balancing the ColorChecker values for each illuminant using
the white patch of the color chart (even though the white
Macbeth patch does not have a perfectly flat reflectance
spectrum).

We then picked example images from the NUS dataset of
Cheng et al. [3]. The Canon image is Canon600D_0091.CR2,
and the Nikon image is NikonD40_0004.NEF. Using gray-
world algorithm, we estimated the illuminant in each image
and white balanced the source image.

Next, we applied the white-balanced global mapping to
the source image, to obtain its projection into the target
camera space. Then, we needed to white balance this image
to the correct value in the target camera’s color space; so
we used the global transform to obtain the correct white
point, and inverse-white balance the transformed image. We
then completed the in-camera processing using the pipeline
software of [1] to obtain the photofinished sRGB image.

1.4 Fig.1 D
The camera used in this example was a Nikon D40 whose
spectral response was made available by Jiang et al. [4]. The
images and the corresponding ground-truth illumination data
are from the NUS dataset of Cheng et al. [3]. There were 117
images for the NikonD40 folder of this dataset. We manually
scored whether each photo was taken indoors or outdoors.

Next, we calculated the “white-point’ of every daylight il-
luminant between 4,000 and 25,000 K, using the CIE daylight
model, in the color space of the Nikon D40 camera. We then
plotted the locus of “daylight chromaticities” for this camera,
where chromaticity r is given as:

r =
R

(R+G+B)
, (4)

and the b chromaticity is given similarly. Finally, we
computed the r and b chromaticities of the provided ground-
truth illuminations plotted them in the same coordinates.

2 Results on our ground-truth dataset
Here, we present all the results on our ground-truth dataset
in Fig. 1 through Fig. 4. As in Fig. 3 and Fig. 5 from the main
paper, the horizontal and the vertical axes are respectively
wavelength (nm) and relative sensitivity.

3 Relative full scale error versus ∆E2000

In the main text, we calculated reconstruction errors between
our predicted curves and the ground truth using the relative
full scale error metric. Here, using the CIE ∆E2000 metric, we
demonstrate the perceptual projection of these errors relative
to the human visual system. We use the case of the Canon
5D Mk II, for which two ground truth values exist (Fig. 3 in
main text). We simulated the appearance of a Macbeth Col-
orChecker under D65 light according to the Kawakami et al [6]
ground truth spectral sensitivity curves for the Canon 5D Mk
II, and Jiang et al. [4] ground truth. We white balanced the
resulting simulations using the white patch. The distributions
of the ∆E2000 error resulting from the comparison between
our predictions and the two ground truth curves are given
in Fig. 5.

The color differences arising from differences in spectral
sensitivity curves are difficult to discern when looking at
the simulated charts, however they are reflected into the
∆E2000 errors. Considering that ∆E2000 = 1 marks the
discriminability threshold below which two solid colors are
indiscriminable to the human eye, as expected, large errors
in spectral sensitivity reconstruction translates to large color
differences that would be visible.

4 A big picture look at the Adobe DNG Converter
dataset
Here, we show a breakdown of the statistics of the 1000
camera for which we were able to extract color matrices from
the Adobe DNG Converter. The information directly available
from the Adobe DNG Converter were the manufacturer name,
and the make & model of the camera. We manually compiled
the rest of the sensor information including sensor size, for-
mat, camera type and release year. While we made every effort
to ensure the accuracy of these data and performed checks and
validations, some erroneous entries may still be present.
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Canon 10D (4.18%)

Prediction

Huynh & Robles-Kelley

Canon 10D (4.98%)

Prediction

Kawakami et al.

Canon 1D Mk III (7.74%)

Prediction

Jiang et al.

Canon 1Ds Mk II (11.37%)

Prediction

Akkaynak et al.

Canon 1Ds Mk II (13.14%)

Prediction

Brady & Legge

Canon 20D (4.97%)

Prediction

Jiang et al.

Canon 300D (7.86%)

Prediction

Jiang et al.

Canon 400D (7.06%)

Prediction

Lebourgeois

Canon 40D (6.17%)

Prediction

Jiang et al.

Canon 40D (5.46%)

Prediction

Mauer & Wueller

Canon 500D (6.40%)

Prediction

Jiang et al.

Canon 50D (5.51%)

Prediction

Jiang et al.

Canon 5D (15.04%)

Prediction

Kawakami et al.

Canon 5D Mk II (6.20%)

Prediction

Jiang et al.

Canon 5D Mk II (17.24%)

Prediction

Kawakami et al.

Fig. 1. The results of our method on the ground-truth dataset (Part 1).
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Canon 600D (6.88%)

Prediction

Jiang et al.

Canon 60D (7.76%)

Prediction

Jiang et al.

iPhone 10 (8.35%)

Prediction

Tominaga et al.

iPhone 11 (9.79%)

Prediction

Tominaga et al.

iPhone 12 Pro Max (9.28%)

Prediction

Tominaga et al.

iPhone 8 (9.39%)

Prediction

Tominaga et al.

Leica M8 (10.70%)

Prediction

Mauer

Nikon D1x (7.58%)
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Kawakami et al.

Nikon D200 (7.73%)

Prediction

Jiang et al.

Nikon D200 (7.77%)

Prediction

Mauer & Wueller

Nikon D300s (7.72%)

Prediction

Jiang et al.

Nikon D3 (12.35%)

Prediction

Brady & Legge

Nikon D3 (7.15%)

Prediction

Jiang et al.

Nikon D3X (7.08%)

Prediction

Jiang et al.

Nikon D40 (9.42%)

Prediction

Jiang et al.

Fig. 2. The results of our method on the ground-truth dataset (Part 2).
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Nikon D50 (8.50%)

Prediction

Jiang et al.

Nikon D5100 (8.10%)

Prediction

Jiang et al.

Nikon D700 (7.17%)

Prediction

Jiang et al.

Nikon D700 (8.39%)

Prediction

Mauer & Wueller

Nikon D70 (8.52%)

Prediction

Huynh & Robles-Kelley

Nikon D70 (8.63%)

Prediction

Kawakami et al.

Nikon D80 (6.43%)

Prediction

Jiang et al.

Nikon D90 (7.60%)

Prediction

Jiang et al.

Olympus EPL2 (11.67%)

Prediction

Jiang et al.

Panasonic DMC LX3 (8.29%)

Prediction

Mauer

Panasonic DMCL X5 (7.49%)

Prediction

Berra et al.

Pentax K5 (6.69%)

Prediction

Jiang et al.

Pentax Q (11.45%)

Prediction

Jiang et al.

Samsung Galaxy S20 (14.01%)

Prediction

Tominaga et al.

Samsung Galaxy S7 Edge (8.76%)

Prediction

Tominaga et al.

Fig. 3. The results of our method on the ground-truth dataset (Part 3).



7

Samsung Galaxy S8 (9.69%)

Prediction

Burggraaff et al.

Samsung Galaxy S9 (7.79%)

Prediction

Tominaga et al.

Sony NEX5N (8.70%)

Prediction

Jiang et al.

Sony NEX7 (9.45%)

Prediction

Berra et al.

Fig. 4. The results of our method on the ground-truth dataset (Part 4).

Discriminability 
threshold

RGB appearance using 
ground truth curves from 
Kawakami et al. (2013)

RGB appearance 
using our predicted 
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RGB appearance 
using our predicted 
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Jiang et al. (2013)

Discriminability 
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Fig. 5. Perceptual (∆E2000) errors between high-error (Kawakami et. al ground truth) and low-error (Jiang et al. ground truth) spectral
sensitivity reconstructions. While the differences in the simulated color charts are hardly visible to the eye, the perceptual differences can be
quantified.
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Fig. 6. Sensor types of the cameras in the Adobe dataset.
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Fig. 7. Types of the cameras in the Adobe dataset according to release year of the camera.
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